If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-90x+180=0
a = 4; b = -90; c = +180;
Δ = b2-4ac
Δ = -902-4·4·180
Δ = 5220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5220}=\sqrt{36*145}=\sqrt{36}*\sqrt{145}=6\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-6\sqrt{145}}{2*4}=\frac{90-6\sqrt{145}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+6\sqrt{145}}{2*4}=\frac{90+6\sqrt{145}}{8} $
| M^2+10m+14=7 | | 70=1/2h(2+5) | | -3x+2=-4x-1 | | 19x+5=18x+3 | | 9+9+9=9x | | 157=7m-3(-7-9m) | | 4x-6x-2x=0 | | 0=(-4x+7)-(2-8x)+(2x-3) | | 3w-7=2w+2 | | 16=8+y | | 3x^2-2x-17=0 | | 2x-37=79 | | 8.43v=9.32 | | 3(w-2)=3 | | (3x+14)48=146 | | 1.7t-11.3t+3.4=-35 | | 5b-13=7 | | 4x-7x=19-7 | | 23+x=190 | | (6x+18)=24 | | 4x+7=3x-3 | | (5/6)x=(-3/4) | | 7/3z-6z=3 | | 4(3p-4)=-100 | | 2x+3+6x=7x+6 | | 16t+6=6 | | 3(-4x+2)=-11(x+1) | | -2x=-3x+7 | | 2/5v=10v=25 | | -3x+1=-2x+2 | | 3/2u=15/88 | | -11+96=-5(7-6z) |